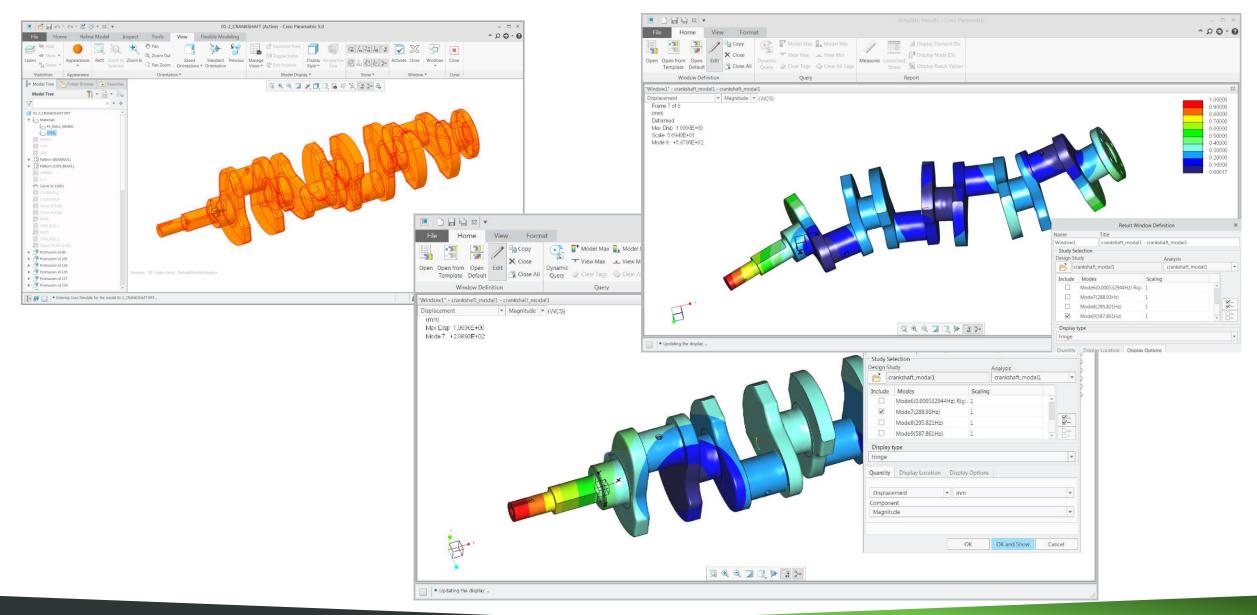
COMPARING CREO SIMULATE WITH CREO SIMULATION LIVE

Datasets Used in Comparison

AGENDA

- Engine Crankshaft Modal Analysis
- V8 Engine Structural Analysis
- Manifold Thermal Analysis
- Tuning Fork Modal Analysis



ENGINE CRANKSHAFT - MODAL ANALYSIS

3

CREO SIMULATE RESULTS

CREO SIMULATE RESOURCE USAGE

Single Pass Adaptive 3 minutes total time (includes meshing)

Memory and Disk Usage:

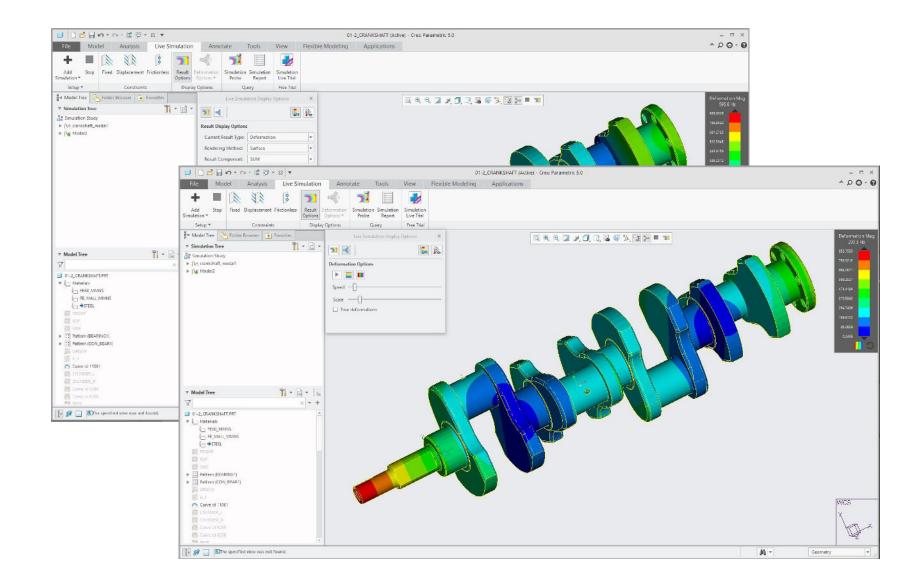
Machine Type: Windows 7 64 Service Pack 1 RAM Allocation for Solver (megabytes): 512.0

Total Elapsed Time (seconds): 149.04 Total CPU Time (seconds): 186.33 Maximum Memory Usage (kilobytes): 1525494 Working Directory Disk Usage (kilobytes): 1207296

Number of	Rigid Modes: 6
Number of	Modes: 9
Mode	Frequency (Hz)
1	0.000000e+00
2	0.000000e+00
3	0.000000e+00
4	0.000000e+00
5	0.000000e+00
6	5.329435e-04
7	2.889300e+02
8	2.958206e+02
9	5.878609e+02

RMS Stress Error Estimates:

Mode	Stress Error	(%	of	Max	Modal	Stress)
1	2.7%					
2	2.1%					
3	2.5%					
4	3.6%					
5	2.6%					
6	2.1%					
7	2.6%					
8	3.4%					
9	2.7%					


CREO SIMULATION LIVE RESULTS 293.3 / 595.6

Results

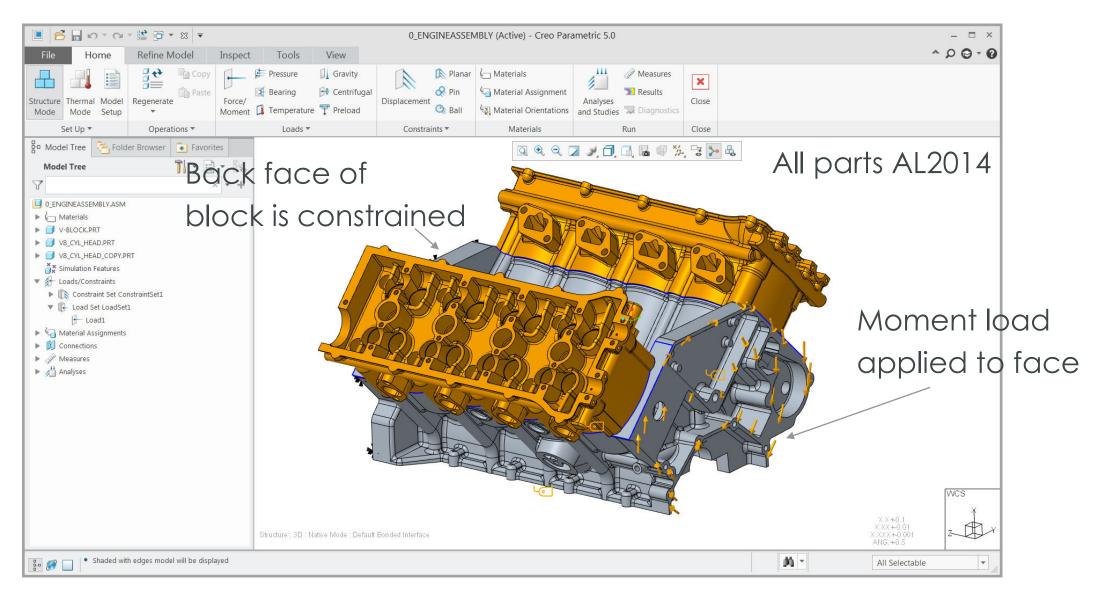
Mode 1: 293.3Hz Mode 3: 595.6Hz

Time taken

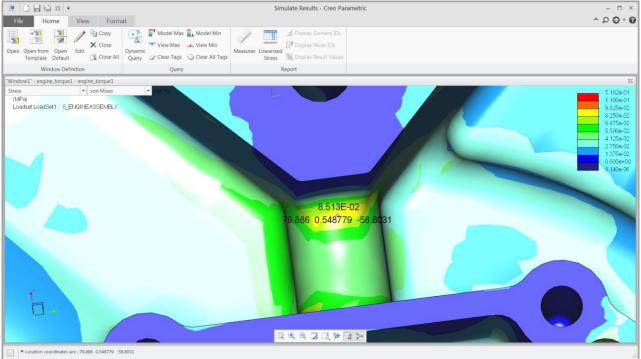
< 2 seconds

😵 ptc

RESULTS COMPARISON


	Creo Simulation Live	Creo Simulate	% difference
Mode 1	293.3 Hz	288.9 Hz	1.5%
Mode 3	595.6 Hz	587.9 Hz	1.3%
Solution Time	3 sec	3 minutes	60x

V8 ENGINE - TORQUE LOAD

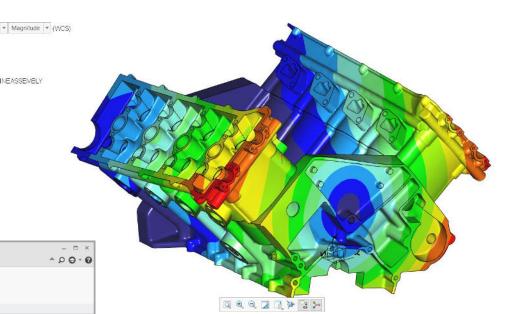

V8 ENGINE MODEL – STATIC ANALYSIS

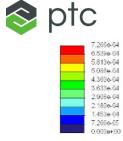
CREO SIMULATE RESULTS

- Max displacement 0.7266e-3
- VMS at Ref point 8.513e-2

Displacement

Deformed


Max Disp 7.2659E-04


LoadsetLoadSet1: 0_ENGINEASSEMBLY

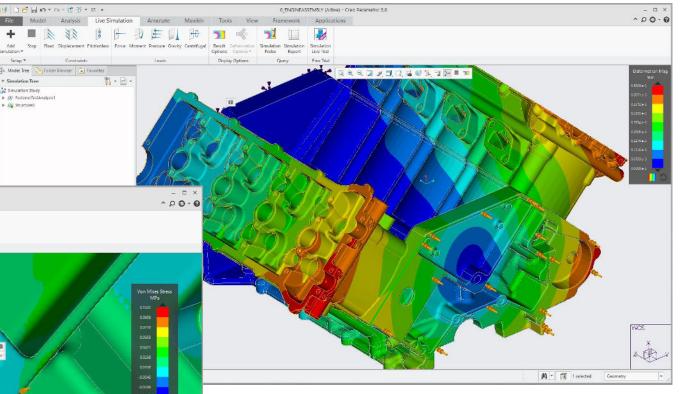
Scale 8.4992E+04

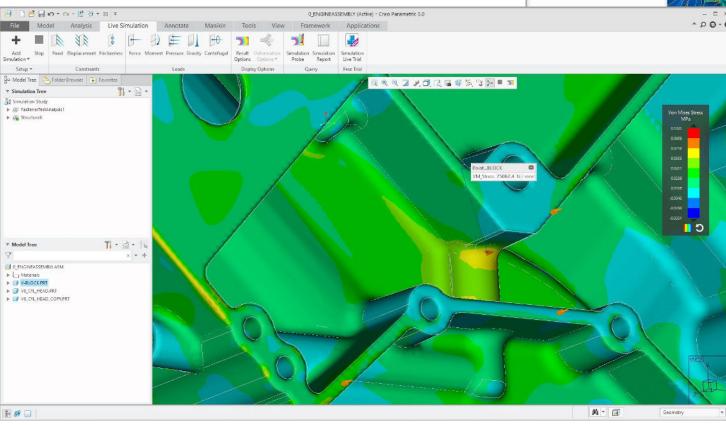
(mm)

Frame 5 of 8

CREO SIMULATION LIVE RESULTS

Add

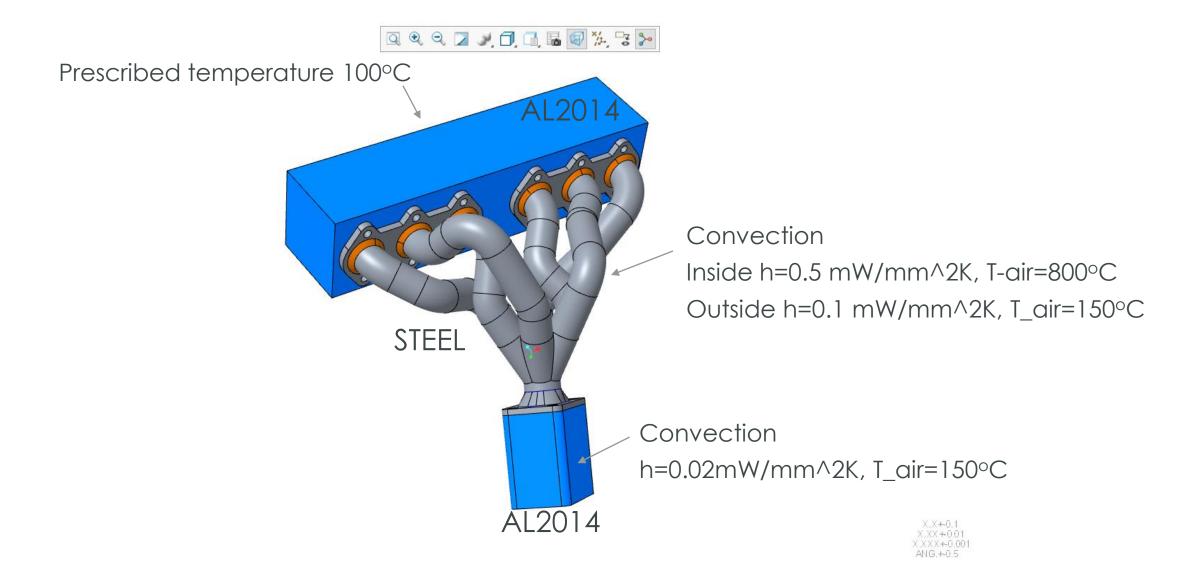

Setup 7 34 Model Tree


* Simulation Tree

Simulation Study ▶ @ Fastene/TestAnalysis1 ► 45 StructureS

- Max displacement 0.6829e-3
- VMS at ref point 7.5067e-02

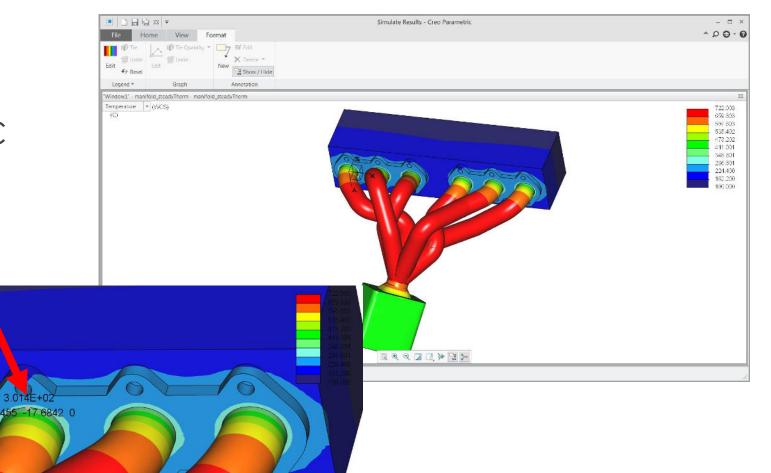
RESULTS COMPARISON


	Creo Simulation Live	Creo Simulate	•	% difference
max displacement	0.6829e-3 mm	0.7266e-9 mm		6%
Stress at Ref point	7.5067e-02	8.513e-2		12%
Time for single solution	<10 sec	3 hours		!!!!! 😳

MANIFOLD - THERMAL ANALYSIS

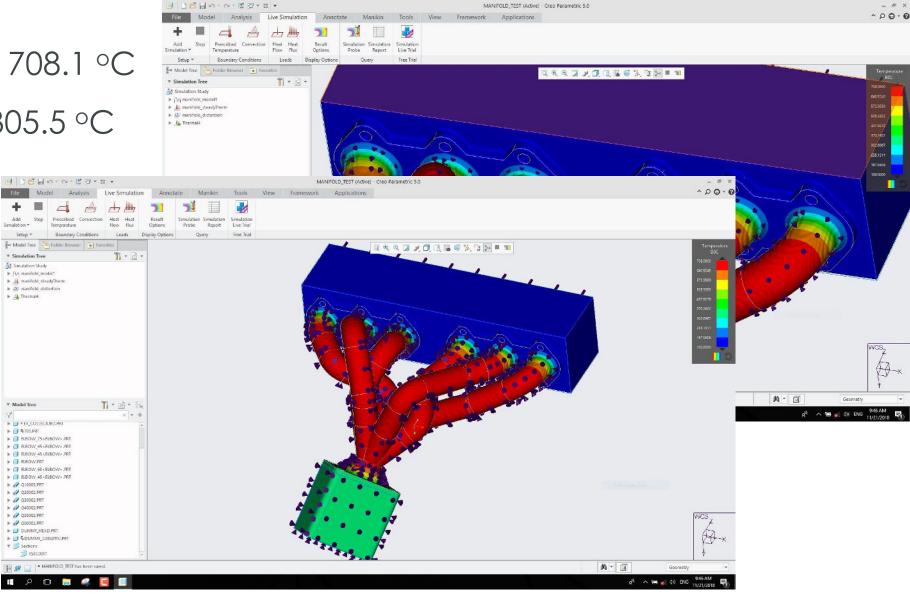
STEADY STATE THERMAL MODEL

1


SIMULATE RESULTS

📚 ptc

- Max temperature 722 °C
- Reference point 301.4 °C


23232

Temperature

CREO SIMULATION LIVE RESULTS

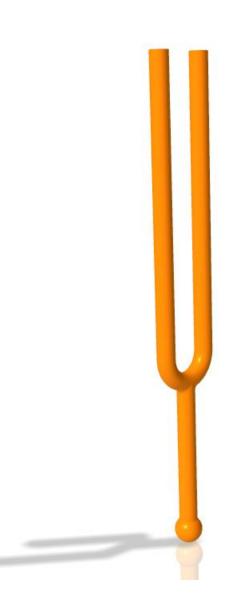
- Max temperature 708.1 °C
- Reference point 305.5 °C

😵 ptc

RESULTS COMPARISON

	n+n
\sim	DTC

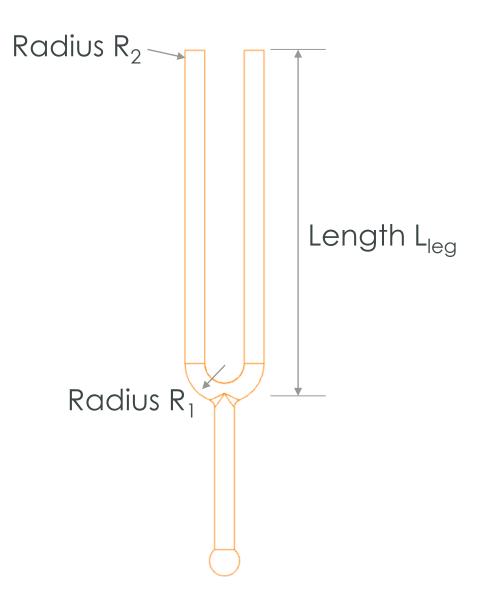
	Creo Simulation Live	Creo Simulate	% difference
Max temperature	708.1 °C	722.0 °C	1.9%
Ref point temp.	305.5 °C	301.4 °C	1.3%
Solution Time	<1 sec	1 minute	60x


* Steady State thermal analysis is AMAZING fast

TUNING FORK - MODAL ANALYSIS

TUNING FORK ANALYSIS

- Used for tuning musical instruments
- A standard reference frequency is 440Hz (A above middle C)
- This frequency is produced when the two "legs" are oscillating
- The first model of vibration is the dominant one, and the thus the frequency of the first mode should be 440Hz



 In a rigidly constrained cantilever beam the theoretical* natural frequency is

$$f = \frac{1.875^2 R_2}{4\pi L_{leg}^2} \sqrt{\frac{E}{\rho}}$$
(1)

• Where
$$L_{leg} = L + \frac{1}{2}\pi R_1$$

- Material: AISI4130 where
 E = 205GPa, and ρ = 7850 kg/m3
- R1=7.5mm, R2=2.5mm
- For f=440Hz, \rightarrow L=78mm
- This will be slightly underestimated due to slight differences due to cantilever beam approximation of real geometry

CREO SIMULATE MODEL

- Geometry as shown
 Set parameter L = 50mm
- Material assigned
- Create Modal analysis
 Unconstrained
- Results
 - Look for first non-rigid mode (should b the two fork legs moving symmetrically)
 - − So for L=50 \rightarrow f=972Hz

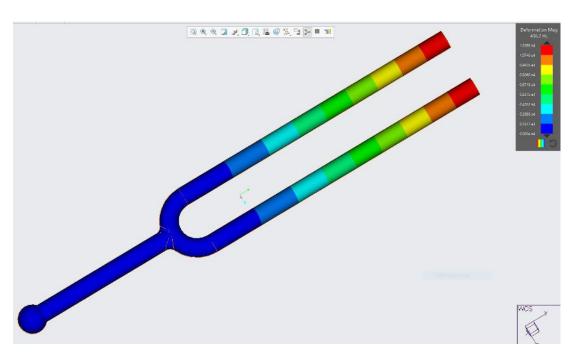
Mode	Frequency (Hz)
1	0.000000e+00
2	0.000000e+00
3	0.000000e+00
4	0.000000e+00
5	2.314839e-03
6	4.082460e-03
7	9.718596e+02
8	1.474661e+03
9	1.881424e+03
10	1.926127e+03

: Default Bonded Interface

	Material Definition	
ame		
TEEL_AISI_4130		
escription		

Look In							
Part			- 🗟		RK		
Filter By D	efault						▼ Cust
Name		Туре	Value	Designate		Source	Descript
DESCRIP	TION	String	TuningFo		Full	User-Define	
MODELE	D_BY	String	Greg	\checkmark	• rFull	User-Define	
PART_NU	JMBER	String	440	\checkmark	• r Full	User-Define	
MANUFA	CTURER	String		\checkmark	• Full	User-Define	
L		Real Numbe	50.00000	0	• Full	User-Define	
R1		Real Numbe	7.500000		oFull	User-Define	
R2		Real Numbe	2.500000		• oFull	User-Define	
PTC_MA	FERIAL_N/	String	STEEL_AI	SI_	• r Full	User-Define	
4							
+ -			Ma	iin		▼ Prope	erties
Reset						0	К
					VIII WIII	rigia mode sea	arcn
	Modes		Output	Convergence	Excluded elements		
	Modes						
	_	er of modes des in frequenc	y range				
	Number of	fmodes	10				* *
		froquency	0				
	Minimum	requency	V				

OPTIMIZING THE MODEL


- We want to determine length L to give **f=440Hz**
- Use **Optimization Study** in Creo Simulate
- Set the Design Limit to be 440Hz on Mode 7.
- Assign parameter L some upper/lower limits
- Run the study
 - Result... L=79.4mm (giving f=440.4Hz)

Parameters:			
L	79.3952		
Status of Optimiza	tion Limit: 1		
modal_frequency	4.4035e+02 =	4.4000e+02	(satisfied
within tolerance)			

		Optimizatio	n Study Definit	tion		
lame						
uning_fork_opt						
escription						
ind the length for	Freq 440Hz (A)					
ype:						
Optimization						
Goal						
Minimize		▼ to	otal_mass			
Design Limits						
Measure		Value	Units			
modal_frequency	=	440.000000	/ sec		C	-
						#
Analysis			Mada			
Analysis			Mode			
fork_modal	Mada		Mode V Mode 7			
	Mode		1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1			
fork_modal	Mode		1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1			
fork_modal	Mode	Minimum	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	Maximum		
fork_modal Track Specific I Variables	1	Minimum 50	▼ Mode 7	Maximum 90	Units]*]
fork_modal Track Specific I Variables Variable	Current		▼ Mode 7		Units]*
fork_modal Track Specific I Variables Variable	Current		▼ Mode 7		Units]*
fork_modal Track Specific I Variables Variable	Current		▼ Mode 7		Units]*
fork_modal Track Specific I Variables Variable	Current		▼ Mode 7		Units	
fork_modal Track Specific I Variables Variable L	Current		▼ Mode 7		Units	
fork_modal Track Specific I Variables Variable	Current		▼ Mode 7		Units	
fork_modal Track Specific I Variables Variable L	Current		▼ Mode 7		Units	

COMPARING TO CREO SIMULATION LIVE

- The geometry/material from previous analysis used directly
- Unconstrained modal analysis defined
- Results: f=436.2 Hz
- This is about a 1% difference from Creo Simulate ☺

🚫 ptc

FINAL COMMENTS

- The technology used in Creo Simulation Live is shown in these examples (and by ANSYS benchmarks) can clearly be seen to be accurate.
- As long as the physics of the problem can be modeled with linear static, modal and steady state thermal assumptions, then the results in Creo Simulation Live will not differ by any significant amount from traditional FEA codes such as Creo Simulate, and many others.
- Note: In very large models such as the V8 Engine example, there is more chance that small geometric features may be approximated/ignored, thus leading to larger differences in stress results. For the purposes of providing design guidance or evaluating typical design level what-if questions, these differences will have little influence. (compare to other uncertainties in material properties, load values, etc.)
- The value of having near real-time results feedback, completely inside the design environment is enormous, and will revolutionize the way simulation is used to drive designs!

